Metaheuristic Techniques

نویسندگان

  • Sunith Bandaru
  • Kalyanmoy Deb
چکیده

Most real-world search and optimization problems involve complexities such as non-convexity, nonlinearities, discontinuities, mixed nature of variables, multiple disciplines and large dimensionality, a combination of which renders classical provable algorithms to be either ineffective, impractical or inapplicable. There do not exist any known mathematically motivated algorithms for finding the optimal solution for all such problems in a limited computational time. Thus, in order to solve such problems to practicality, search and optimization algorithms are usually developed using certain heuristics that though lacking in strong mathematical foundations, are nevertheless good at reaching an approximate solution in a reasonable amount of time. These so-called metaheuristic methods do not guarantee finding the exact optimal solution, but can lead to a near-optimal solution in a computationally efficient manner. Due to this practical appeal combined with their ease of implementation, metaheuristic methodologies are gaining popularity in several application domains. Most metaheuristic methods are stochastic in nature and mimic a natural, physical or biological principle resembling a search or an optimization process. In this paper, we discuss a number of such methodologies, specifically evolutionary algorithms, such as genetic algorithms and evolution strategy, particle swarm optimization, ant colony optimization, bee colony optimization, simulated annealing and a host of other methods. Many metaheuristic methodologies are being proposed by researchers all over the world on a regular basis. It therefore becomes important to unify them to understand common features of different metaheuristic methods and simultaneously to study fundamental differences between them. Hopefully, such endeavors will eventually allow a user to choose the most appropriate metaheuristic method for the problem at hand.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN EFFICIENT METAHEURISTIC ALGORITHM FOR ENGINEERING OPTIMIZATION: SOPT

Metaheuristic algorithms are well-known optimization tools which have been employed for solving a wide range of optimization problems so far. In the present study, a simple optimization (SOPT) algorithm with two main steps namely exploration and exploitation, is provided for practical applications. Aside from a reasonable rate of convergence attained, the ease in its implementation and dependen...

متن کامل

Econometrics and Metaheuristic Optimization Approaches to International Portfolio Diversification

Using advanced techniques of econometrics and a metaheuristic optimization approach, this study attempts to evaluate the potential advantages of international portfolio diversification for East Asian international investors when investing in the Middle Eastern emerging markets. Overall, the results of both econometric and the metaheuristic optimization methods are supporting each other. Finding...

متن کامل

Metaheuristic Search as a Cryptological Tool

Cryptology is a thriving research area of great practical importance. It is a fundamental building block of communications security. Metaheuristic optimisation techniques such as simulated annealing and genetic algorithms have found successful application in a huge number of fields. However, their application to leading edge industrial-strength cryptology has been slight. The power of metaheuri...

متن کامل

Metaheuristic Aided Software Features Assembly

One significant task addressed during software development project is to determine which features should be covered by the application that is being developed. This problem is known as the Next Release Problem (NRP) and has been solved using metaheuristic search techniques. We show how to apply these techniques by its embedding into a requirement management tool as an assistant functionality. W...

متن کامل

A systematic review of search-based testing for non-functional system properties

Search-based software testing is the application of metaheuristic search techniques to generate software tests. The test adequacy criterion is transformed into a fitness function and a set of solutions in the search space are evaluated with respect to the fitness function using a metaheuristic search technique. The application of metaheuristic search techniques for testing is promising due to t...

متن کامل

A Systematic Review of Non-Functional Search-Based Software Testing

Search-based software testing is the application of metaheuristic search techniques to generate software tests. The test adequacy criterion is transformed into a fitness function and a set of solutions in the search space are evaluated with respect to the fitness function using a metaheuristic search technique. The application of metaheuristic search techniques for testing is promising due to f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016